
1

Building Collections of Entity Classes
using a DataReader

As discussed in the last blog post, it is a best practice to build entity classes.
In the last post we filled a DataTable with Category data and then iterated
over that DataTable to create a collection of Entity classes. In this blog post
we will use a SqlDataReader to fill the Entity classes.
When using a SqlDataReader you must ensure that you close the data reader
after you are done with it. You can write a try…catch…finally and close the
data reader in the finally block, or you can use the using statement. I like the
using statement because you do not have to write as much code. In my tests
with VS 2010, both ways run just as fast.
I am going to use a new table that I created called Product for this sample.
Here is the definition of the Product table. I am switching to another table
because I wanted to have a lot of data to run some timing comparisons. I
have filled this Product table with over 6200 rows of data. In addition, I
wanted some different data types such as DateTime, decimal and boolean to
show how to perform conversions and take into account null values in a
database.

CREATE TABLE Product
(
 ProductId int PRIMARY KEY NONCLUSTERED
 IDENTITY(1,1) NOT NULL,
 ProductName varchar(50) NOT NULL,
 IntroductionDate datetime NULL,
 Cost money NULL,
 Price money NULL,
 IsDiscontinued bit NULL
)

You will need to create a class to mimic the columns in the table. Below is a
Product class with the corresponding properties to the column in the Product
table:

2

C#
public class Product
{
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public DateTime IntroductionDate { get; set; }
 public decimal Cost { get; set; }
 public decimal Price { get; set; }
 public bool IsDiscontinued { get; set; }
}

Visual Basic
Public Class Product
 Public Property ProductId As Integer
 Public Property ProductName As String
 Public Property IntroductionDate As DateTime
 Public Property Cost As Decimal
 Public Property Price As Decimal
 Public Property IsDiscontinued As Boolean
End Class

Below is the code to load a collection of Product data into a collection of
Product objects using a data reader.

3

C#
private List<Product> GetProducts()
{
 SqlCommand cmd = null;
 List<Product> ret = new List<Product>();
 Product entity = null;

 cmd = new SqlCommand("SELECT * FROM Product");
 using (cmd.Connection = new SqlConnection(
 "Server=Localhost;Database=Sandbox;Integrated
 Security=Yes"))
 {
 cmd.Connection.Open();
 using (var rdr =
 cmd.ExecuteReader(CommandBehavior.CloseConnection))
 {
 while (rdr.Read())
 {
 entity = new Product();

 // ProductId is a NOT NULL field
 entity.ProductId = Convert.ToInt32(rdr["ProductId"]);
 // Strings automatically convert to "" if null.
 entity.ProductName = rdr["ProductName"].ToString();
 entity.IntroductionDate =
 DataConvert.ConvertTo<DateTime>(
 rdr["IntroductionDate"],
 default(DateTime));
 entity.Cost =
 DataConvert.ConvertTo<decimal>(rdr["Cost"],
 default(decimal));
 entity.Price =
 DataConvert.ConvertTo<decimal>(rdr["Price"],
 default(decimal));
 entity.IsDiscontinued =
 DataConvert.ConvertTo<bool>(
 rdr["IsDiscontinued"],
 default(bool));

 ret.Add(entity);
 }
 }
 }

 return ret;
}

Visual Basic
Private Function GetProducts() As List(Of Product)
 Dim cmd As SqlCommand = Nothing
 Dim ret As New List(Of Product)()
 Dim entity As Product = Nothing

 cmd = New SqlCommand("SELECT * FROM Product")
 Using cnn As SqlConnection = _
 New SqlConnection(_

4

 "Server=Localhost;Database=Sandbox;Integrated
 Security=Yes")
 cmd.Connection = cnn
 cmd.Connection.Open()
 Using rdr As SqlDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 While rdr.Read()
 entity = New Product()

 ' ProductId is a NOT NULL field
 entity.ProductId = Convert.ToInt32(rdr("ProductId"))
 ' Strings automatically convert to "" if null.
 entity.ProductName = rdr("ProductName").ToString()
 entity.IntroductionDate = _
 DataConvert.ConvertTo(Of DateTime) _
 (rdr("IntroductionDate"), DateTime.MinValue)
 entity.Cost = DataConvert.ConvertTo(Of Decimal) _
 (rdr("Cost"), 0D)
 entity.Price = DataConvert.ConvertTo(Of Decimal) _
 (rdr("Price"), 0D)
 entity.IsDiscontinued = _
 DataConvert.ConvertTo(Of Boolean) _
 (rdr("IsDiscontinued"), False)

 ret.Add(entity)
 End While
 End Using
 End Using

 Return ret
End Function

The above code is fairly straight forward. Loop through each row and grab
each column of data. Convert the data coming from the column into an
appropriate value based on the data type. Remember when reading from a
DataRow or from a column in the SqlDataReader that the data comes in as
an “object” data type. So you must convert it in order to put it into a strongly
typed property in your Product object. Of course, you must also handle null
values and that is where the DataConvert class comes in.

The DataConvert Class
Whether you use a DataTable/DataSet like in my last blog post or whether
you use a DataReader, you will need to check to see if the data read in from
the database is a null value. If so, you either need to use Nullable data types
in all of your classes, or you need to convert the null to some valid value for
the appropriate data type. In the above code I used a class to check for and

5

convert a null value into a default value for the data. The DataConvert class
looks like the following:

C#
public class DataConvert
{
 public static T ConvertTo<T>(object value,
 object defaultValue) where T : struct
 {
 if (value.Equals(DBNull.Value))
 return (T)defaultValue;
 else
 return (T)value;
 }
}

Visual Basic
Public Class DataConvert
 Public Shared Function ConvertTo(Of T As Structure) _
 (value As Object, defaultValue As Object) As T
 If value.Equals(DBNull.Value) Then
 Return DirectCast(defaultValue, T)
 Else
 Return DirectCast(value, T)
 End If
 End Function
End Class

I used a generic to specify the data type to convert to and then passed in the
value from the column and a default value to return if the value is a null.

6

Summary
In this blog post saw how to create entity classes using a SqlDataReader
instead of a Data Table as shown in the previous blog post. In addition you
learned how to handle null values by using a DataConvert class.

	Building Collections of Entity Classes using a DataReader
	The DataConvert Class

